Ferrocement Cast-in-place Water Tank (75 Cu. M.)

Designed by:
ACECOMS, I FIC
ACECOMS School of Civil Engineering Asian Institute of Technology (AIT)

Designed for:

United Nations High Commissioner for Refugees (UNHCR)

Content	
Drawing Number	Title
CD75-01	Key Features
CD75-02	Plan, Elevation and Section
CD75-03	Foundation Details
CD75-04	Base Slab Details
CD75-05	Wall and Central Column Details
CD75-06	Roof Details
CD75-07	Reinforcing Steel Skeleton
CD75-08	Construction Tools and Steps
CD75-09	Material Specification and BOM

Masonry Brick Layout

Section 2-2: Foundation Detail

(1) Fifrocement Cast-in-place Water Tank (75 Cu.m.)			Drawing Title Foundation Details		$\begin{array}{\|c} \text { Drawing No. }_{\text {CD75-01 }} \end{array}$
			Sale: Not to Scale	netu	Date: Marcr 202

Section 4-4: Water Tank Wall Section

Section 6-6
Section 5-5

Section 7-7: Central Column Detail

Note: - RB = Round Bar - GI = Galvanized Iron - All dimensions are in milimeter

Designed by ACECOMS	

Wall and Central Column Details
Date: March 2002

Note: Only Selected Typical Elements Shown
Note: - RB = Round Bar

- All dimensions are in milimeter

1 Ferrocement Cast-in-place Water Tank	Designed by	Drawing Title: Reinforcing Steel Skeleton		Drawing No: CD75-07
UNHCR	School of Civil Engineering (AIT)	Scale: Not to Scale	Client: UNHCR	Date: March 2002

Construction Main Steps

Step 1: Selection of Site

Step 2: Site Clearance
Step 3: Preparation of Foundation
Step 4: Preparation of Lean Concrete Base
Step 5: Preparation of Base Slab Reinforcement
Step 6: Laying Base Slab Reinforcement
Step 7: Erecting L-bars Along the Wall-Base J unction Step 8: Placing Vertical Dowel/ Plate/Bars for Central Column Step 9: Casting the Base Slab
Step 10: Erection of Vertical Reinforcement and Stiffeners for Wall Step 11: Keeping Openings for Construction and Pipe Works Step 12: Fixing Wire (Chicken) Mesh (WM1 and WM2) Step 13: Preparation and Fixing the Central Column Step 14: Plastering the Wall
Step 15: Preparation of Roof Shallow Truss Step 16: Fixing Roof Trusses (Roof Stiffeners) Step 17: Placing Roof Reinforcements
Step 18: Fixing the Roof Mesh
Step 19: Providing Openings in the Roof
Step 20: Plastering Roof Trusses
Step 21: Temporary Formwork for Plastering of Roof Surface
Step 22: Plastering Roof Surface
Step 23: Plastering Temporary Openings
Step 24: Finishing the Surface
[For Construction Procedure Details Refer to "How to Manual"]

Drawing Title:
 Construction Tools and Steps

Drawing No:
CD75-08

Material Specification

Cement:
Use ordinary Portland cement Type I or II for tropical countries and Type II for cold climates

Sand:

1. Use well graded sand. Sand that is too fine or too coarse is not suitable
2. Separate sand from stone using 6.4 mm ($1 / 4$ inch) mesh screen.
3. No organic or chemical impurities. If quality is in doubt, wash with clean water
4. Desirable sand grading is as follow:

Sieve

$3 / 8 \mathrm{in}(9.5 \mathrm{~mm})$
No. 4 (4.75 mm)
No. $8(2.36 \mathrm{~mm})$
No. $14(1.18 \mathrm{~mm})$
No. 30 (600um)
No. 100 (150um)
Percent passing
100
95 to 100
100
50 to 85
2 to 10
Water
fit for drinking is surtab
2. Salty water should never be used.

Wire Mesh: 1. Must be easy to handle and flexible enough to be bent around corners.
2. Galvanized wire mesh is preferred as it is less likely to rust or corrode.
3. Use 0.5 mm to 1.00 mm diameter with 10 mm to 25 mm mesh opening.
4. Free from grease, oil, rust and anything that might reduce bond.

Skeletal Steel :

1. Free from grease, oil detergents, organic matter, cracks of blow holes
2. Bars are acceptable if no cracks appear after the following field test:
"Bend bar into U shape and then straighten it out. Bend it again in U shape in the opposite direction and straighten it out."
3. Grade SR24: Yield strength $=2400-2600 \mathrm{ksc}$

Steel Channel:

1. Free from grease, oil detergents, organic matter, cracks of blow holes
2. Size $7.50 \mathrm{~cm} \times 3.75 \mathrm{~cm}$ (height \times width)
3. Grade Fy $=2400-2600 \mathrm{ksc}(34-36 \mathrm{ksi})$ and $\mathrm{FU}=4,000-4,500 \mathrm{ksc}(57-64 \mathrm{ksi})$

Tie Wire: Use annealed (soft) galvanized wires of 24 or 26 gauge. Cut pieces of wire from meshes could also be used for tying

Material Quantity Summary (75 cu. m.)

Items	Quantity	Unit
Coarse Sand		
Hollow Blocks	21	m 2
Cement	180	pieces
Sand	4553	kg
Stone	6	m 2
Water	7	m 2
RB 6 mm	2.4	m 2
RB 9 mm	242	m
Steel Channel $(7.50 \mathrm{~cm} \times 3.75 \mathrm{~cm})$	1976	m
Chicken Mesh	18	m
Gl Pipe	168	m 2
Steel Plate	2.7	m
	0.09	m 2

Mix Proportions

Lean Concrete
= 1:4:8 (Cement: Sand: Aggregate by weight)
Slab Concrete
= 1:2:4 (Cement: Sand: Aggregate by weight)
Ferrocement Mortar $=$ 1:2:0.4 (Cement: Sand: Water by weight)

