Ferrocement Cast-in-place Water Tank (75 Cu. M.)

Designed by:

ACECOMS

ACECOMS, IFIC School of Civil Engineering Asian Institute of Technology (AIT)

Designed for:

United Nations High Commissioner for Refugees (UNHCR)

Content			
Drawing Number	Title		
CD75-01	Key Features		
CD75-02	Plan, Elevation and Section		
CD75-03	Foundation Details		
CD75-04	Base Slab Details		
CD75-05	Wall and Central Column Details		
CD75-06	Roof Details		
CD75-07	Reinforcing Steel Skeleton		
CD75-08	Construction Tools and Steps		
CD75-09	Material Specification and BOM		

Ferrocement Construction Tools

Construction Main Steps

Step 1: Selection of Site
Step 2: Site Clearance
Step 3: Preparation of Foundation
Step 4: Preparation of Lean Concrete Base
Step 5: Preparation of Base Slab Reinforcement
Step 6: Laying Base Slab Reinforcement
Step 7: Erecting L-bars Along the Wall-Base Junction
Step 8: Placing Vertical Dowel/ Plate/Bars for Central Column
Step 9: Casting the Base Slab
Step 10: Erection of Vertical Reinforcement and Stiffeners for Wall
Step 11: Keeping Openings for Construction and Pipe Works
Step 12: Fixing Wire (Chicken) Mesh (WM1 and WM2)
Step 13: Preparation and Fixing the Central Column
Step 14: Plastering the Wall
Step 15: Preparation of Roof Shallow Truss
Step 16: Fixing Roof Trusses (Roof Stiffeners)
Step 17: Placing Roof Reinforcements
Step 18: Fixing the Roof Mesh
Step 19: Providing Openings in the Roof
Step 20: Plastering Roof Trusses
Step 21: Temporary Formwork for Plastering of Roof Surface
Step 22: Plastering Roof Surface
Step 23: Plastering Temporary Openings
Step 24: Finishing the Surface
[For Construction Procedure Details Refer to "How to Manual"]

Material Specification

Cement:

	climates			
Sand:	 Use well graded sand. Sand that is too fin Separate sand from stone using 6.4 mm (No organic or chemical impurities. If quali Desirable sand grading is as follow: Sieve 3/8 in (9.5mm) No. 4 (4.75mm) No. 8 (2.36 mm) No. 14 (1.18mm) No. 30 (600um) No. 100 (150um) 	e or too coarse is not suitable 1/4 inch) mesh screen. ty is in doubt, wash with clean water. Percent passing 100 95 to 100 80 to 100 50 to 85 25 to 60 2 to 10		
Water:	 Water fit for drinking is suitable. Salty water should never be used. 			
Wire Mesh:	 Must be easy to handle and flexible enough to be bent around corners. Galvanized wire mesh is preferred as it is less likely to rust or corrode. Use 0.5 mm to 1.00 mm diameter with 10 mm to 25 mm mesh opening. Free from grease, oil, rust and anything that might reduce bond. 			
Skeletal Stee	 I : 1. Free from grease, oil detergents, organic i 2. Bars are acceptable if no cracks appear af "Bend bar into U shape and then straighten i opposite direction and straighten it out." 3. Grade SR24: Yield strength = 2400-2600 I 	natter, cracks of blow holes. ter the following field test: t out. Bend it again in U shape in the ksc		
Steel Channe	 Free from grease, oil detergents, organic i Size 7.50 cm x 3.75 cm (height x width) Grade Fy = 2400-2600 ksc (34-36 ksi) and 	natter, cracks of blow holes J FU = 4,000-4,500 ksc (57-64 ksi)		
Tie Wire:	Use annealed (soft) galvanized wires of 24 o could also be used for tying.	r 26 gauge. Cut pieces of wire from meshes		

Use ordinary Portland cement Type I or II for tropical countries and Type II for cold

Material Quantity Summary (75 cu. m.)

Items	Quantity	Unit	
Coarse Sand	21	m2	
Hollow Blocks	180	pieces	
Cement	4553	kg	
Sand	6	m2	
Stone	7	m2	
Water	2.4	m2	
RB 6 mm	242	m	
RB 9 mm	1976	m	
Steel Channel (7.50 cm x 3.75 cm)	18	m	
Chicken Mesh	168	m2	
GI Pipe	2.7	m	
Steel Plate	0.09	m2	

Mix Proportions

Lean Concrete	= 1:4:8 (Cement: Sand: Aggregate by weight)

Slab Concrete = 1:2:4 (Cement: Sand: Aggregate by weight)

Ferrocement Mortar = 1:2:0.4 (Cement: Sand: Water by weight)

Ferrocement Cast-in-place Water Tank (75 Cu.m.)	Designed by ACECOMS School of Civil Engineering (AIT)	Drawing Title: Material Specification and BOM		Drawing No: CD75-09	
		eering (AIT)	Scale: Not to Scale	Client: UNHCR	Date: March 2002