

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Introduction to hydrogeology II

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

Groundwater dynamics

Groundwater circulation requires 'input' and 'output'

Recharge areas:

→Infiltration into the aquifer from rainfall or surface water bodies. Water table below land surface.

Discharge areas:

→ Exfiltration from the aquifer to springs or to surface water bodies. Pumping wells.

Superimposed groundwater flow systems

Sand box experiment

What are the driving forces of groundwater flow?

The porosity only tells us how much water can be stored in a rock or soil but does not tell us how water moves within the body – hydraulic conductivity is the measure (resistance) that governs groundwater flow, and the hydraulic head gradient is the driving force!

Darcy's experiment:

$$q = \frac{Q}{A} = K \times \frac{\Delta H}{\Delta L}$$

K = hydraulic conductivity [m/s]

q = specific flux [m/s]

 $Q = discharge rate [m^3/s]$

A = cross sectional area of the filter $[m^2]$

 ΔH = difference of piezometric levels [m]

 $\Delta L\text{=}$ Distance between piezometric level

measurements [m]

Quantifying groundwater flow under field conditions

 \rightarrow The first step towards sustainable groundwater management

Hydraulic gradient: how is it identified?

Regional groundwater flux estimation

 \rightarrow Example of application of Darcy's law to field conditions

Let's assume:

- A = 20m * 500m = 10'000m²
- K (sandy, loamy gravel) = 10^{-4} m/s
- ∆H/∆L= (430-429)/1000=10⁻³ [-]

$$Q = A \times K \times \frac{\Delta H}{\Delta l}$$

Q=? [m³/d]

How do we map the 'driving force' of groundwater flow in the field?

Piezometric maps

Measuring at a moment in time the water level in many different places yields a map of the 'topography' of the groundwater body

What do water level maps tell us?

- Flow direction (important for contamination issues and well/spring protection)
- Interaction of groundwater and surface water
- Interaction of wells and springs
- Allows estimation of groundwater fluxes

Water level probe: equipment used to measure the water table

Hydraulic head distribution (piezometric map), 2D horizontal example

Flow is always perpendicular to the isocontours of water table elevation – a water table map is like a topographical map - water will always flow in the direction where the slope is steepest (= direction of hydraulic gradient)

Such maps vary in time!!!

Flow fields and piezometric distribution (2D vertical example)

'Wrong' flow direction due to vertical movement

STYNE AND WE REAL PROPERTY. Water level Aquifer 1 Water level A CLAIP! Aquifer 2

DISCHARGE AREA

→ Piezometric maps have to be done for separate aquifers: using piezometric measurements of different aquifers may lead to oposite flow directions!

→If confronted with water level measurements which indicate 'unlogical' flow directions, this may be due to **different aquifer compartments**

Seasonal variations of water table

Typical porous aquifer reaction: fluctuations caused by seasonal variation of recharge! Long-term behaviour in equilibrium

In Springs: the water level does not change with time (unless they dry up), BUT the discharge rate varies in time!!!

Identification of aquifer type from seasonal fluctuations of water table

Depending on the delay of the reaction of the groundwater level with respect to precipitation (or surface runoff events) we can identify if it is a porous, fractured or a Karst aquifer!!!

Porous aquifer: fluctuations are usually delayed by approximately weeks to months with respect to rainfall (depending on thickness of unsaturated zone and confined or non-confined) \rightarrow water table fluctuations max. 1-3 meters– under confined conditions up to 10 meters

Fractured aquifers: usually delayed by months, water table fluctuations are much higher (small porosity!)→ up to several tens of meters!

Karst aquifers: delayed by only few hours to days, water table fluctuations are mostly synchronous with precipitation/runoff events \rightarrow high fluctuations possible!

Example from Kakuma: porous aquifer

Porous aquifer: fluctuations are usually delayed by approximately weeks to months with respect to rainfall (depending on thickness of unsaturated zone and confined or non-confined)
 → water table fluctuations max. 1-3 meters– under confined conditions up to 10 meters

Example from Kakuma: fractured aquifer

BH-UNHCR

→**Fractured aquifer**: delayed and not distinct reaction to rainfall and runoff events, water table fluctuations are much higher (small porosity!)→ up to several tens of meters!

Which wells are more productive?

Importance of monitoring of water levels (in space and time)

- →Spatial water table measurements allow identification of flow directions and flow systems: important to protect water supply wells
- →Seasonal monitoring of water levels allows identification of aquifer type and reservoir behaviour in response to recharge (e.g. important for sustainable management): Knowing the aquifer type allows estimation of capacity and of reaction to groundwater contamination

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Introduction to the training course

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

Objectives of the training course

- Introduction to basic geological and hydrogeological concepts relevant and applicable to any site where groundwater is exploited in humanitarian contexts for water supply: water balance, aquifer characterisation, resource evaluation, groundwater flow dynamics and systems, groundwater protection and sustainable exploitation
- Introduction to the major hydrogeological assessment and interpretation methods: pumping tests, groundwater quality, groundwater exploration/exploitation, groundwater monitoring
- Developing skills in critical evaluation of hydrogeological assessments:

 e.g. has a pumping test been carried out according to the defined standards and TORs?; or, is well rehabilitation necessary and how can aging of wells be monitored?,;or, has a hydrogeological investigation based its answers to specific hydrogeological questions on sound investigations strategies?; or, is the aquifer exploited sustainably?

Course timetable

Sunday 01/06/14

Time		Unit title	Speaker	Place
09:30-10:30	(01:00)	Welcome and introduction of participants	DP/CP & EM/MP	CHYN
10:30-11:00	(00:30)	Coffee break		CHYN
11:00-14:00	(03:00)	Transfer to field site (Hotel La Couronne, Beurnevésin) and lunch at Café du Soleil (Saignelégier)		
14:00-15:00	(01:00)	WASH in UNHCR (strategical orientation, WMS, tools, what we do, roles & responsibility, monitoring, quality control)	DP/CP	Hotel
15:00-15:30	(00:30)	Coffee break		Hotel
15:30-16:00	(00:30)	Introduction to the training course	EM/MP	Hotel
16:00-17:30	(01:30)	Introduction to applied hydrogeology I	MP	Hotel
17:30-17:45	(00:15)	Break		Hotel
17:45-19:15	(01:30)	Introduction to applied hydrogeology II	EM	Hotel
20:00		Dinner		Hotel

Monday 02/06/14

Time		Unit title	Speaker	Place
07:00-07:45	(00:45)	Breakfast		Hotel
08:00-12:30	(04:30)	Site visit/field work: Basics of groundwater management: Piezometry of the aquifer →Pionic on site and transfer to hotel	Three separate groups	Buix site
12:30-15:00	(02:30)	Workshop: Elaboration of piezometric map of Buix, resource calculation and water balance, flow direction and velocity	Animated group work (EM/MP)	Hotel
15:00-15:30	(00:30)	Coffee break		
15:30-16:30	(01:00)	Basic concepts of groundwater exploration: geophysical investigations	EM	Hotel
16:45-17: <mark>4</mark> 5	(01:00)	Basic concepts of sustainable groundwater exploitation and protection	MP	Hotel
18:00-19:00	(01:00)	Basics of water quality- chemical and bacteriological analyses	CV	Hotel
19:30		Dinner		Hotel

Course timetable

Tuesday 03/06/14

Time	Unit title	Speaker	Place
07:00-07:45 (00:45)	Breakfast		Hotel
08:00-14:00 (06:00)	 Rotating field work: a) Simple geoelectrical survey & interpretation directly in the field – critical discussion of results and implications for such surveys b) Water quality analysis (incl. bacteriology) of all water points: springs, surface water, wells and piezometers c) Vulnerability mapping and groundwater protection zones, pollution risk, monitoring → Picnic on site 	CV/MP/EM three groups with changing activity after 2.0 hours	Buix site
14:00-14:45 (00:45)	Transfer to hotel and coffee break		Hotel
14:45-19:15 (04:30)	 Rotating workshops: a) Interpretation of geophysical investigation b) Bacteriological analysis c) Google earth mapping and elaboration of a groundwater protection map 	CV/MP/EM three groups with changing activity 1.5 hours	Hotel
19:15-19.45 (00:30)	Wrap-up and discussion of the day's work		Hotel
20:00	Dinner		Hotel

Wednesday 04/06/14

Time		Unit title	Speaker	Place
07:00-07:45	(00:45)	Breakfast		Hotel
08:00-09:00	(01:00)	Interpretation of bacteriological analysis	CV	Hotel
09:15-11:45	(02:30)	Concepts of well construction and rehabilitation	Frank Gugger	Hotel
12:00-12:30	(00:30)	Introduction to pumping tests	EM	Hotel
12:45-13:00	(00:15)	Transfer to Buix site		
13:00-19:00	(06:00)	 Rotating field work: a) Step draw-down pumping test b) Constant rate pumping test c) Electrical resistivity tomography → Picnic on site 	MP/EM/PP three groups with changing activity 2 hours	Buix site
20:00		Dinner		Hotel

Course timetable

Thursday 05/06/14

Time		Unit title	Speaker	Place
07:15-08:00	(00:45)	Breakfast		Hotel
08:15-10:00	(01:45)	Workshop: Interpretation of pumping tests: - Safe yield - Well performance - Aquifer characteristics	Animated group work (MP/EM/PP)	Hotel
10:00-10:30	(00:30)	Coffee break		Hotel
10:30-12:15	(01:45)	Workshop: Interpretation of pumping tests: - Safe yield - Well performance - Aquifer characteristics	Animated group work (MP/EM/PP)	Hotel
12:30-13:30	(01:00)	Lunch		Hotel
13:45-15:45	(02:00)	 Workshop: Case study Kakuma: Hydrogeological investigation: geophysics, pumping tests and resource evaluation 	Group work	Hotel
15:45-16:15	(00:30)	Coffee break		Hotel
16:15-18:15	(02:00)	Group presentations of case studies	Group work	Hotel
18:30-19:30	(01:00)	Recap and discussion on field sessions Synthesis of main 'take-home-messages'	DP/CP & EM/MP	Hotel
20:00		Dinner		Hotel

Friday 06/06/14

Time		Unit title	Speaker	Place
07:00-07:45	(00:45)	Breakfast		Hotel
08:00-10:00	(02:00)	Transfer to Neuchâtel, CHYN		
10:00-10:30	(00:30)	Coffee break		CHYN
10:30-11:30	(01:00)	Example of monitoring groundwater resources in the private sector	C. Egger, NW	CHYN
11:45-13:00	(01:15)	Monitoring in humanitarian operations: case study Dadaab/Kakuma	EM/LB	CHYN
13:00-14:00	(01:00)	Lunch		UNINE
14:30-15:30	(01:00)	Roundtable discussion		CHYN
15:30-16:30	(01:00)	Recap, closure, course evaluation and wrap-up discussion	DP/ BMD & EM/MP	CHYN
18:30		Dinner at Hotel Alpes et Lac		Hotel

The Buix plain – geographical situation

Hôtel-Restaurant La Couronne

Geographical situation

- mean annual precipitation: 1100 mm/y
- alluvial plain: about 0.4 km²

Geological setting

Tabular Jura Folded Jura Mountains Swiss Plateau

Alps

Geological setting

Geological setting - stratigraphy

Figure B.6

Log stratigraphique de l'Ajoie basé sur les cartes géologiques suisses (Bonfol et St-Ursanne) et française (Delle). Essai de synthèse.

Geological setting - stratigraphy

Local stratigraphy:

multi-layer karst aquifer: limestone and marls (Rauracian, Sequanian, Kimmeridgian)

regional aquiclude : Oxfordian marls

Jura

Geological cross-section of the Buix plain

Infrastructure of the Buix plain

Buix pumping well

Buix pumping well (1982)

- used for drinking water supply of the village of Buix
- approximately 400 m³/d

CHYN pumping well

Lithological description	Depth (m)	Borehole log	Well construction
Top soil Silty-gravelly sand, red Coarse sand with few gravel, light brown	0.7 1.0		8.5" 6 "
Gravelly slightly silty sand, light brown	2.0 2.8		
Silty sandy clay with some gravel, red-brown	4.0		
Gravelly clay with some gravel, red-brown	5 25		
Silty sandy gravel with some clay 6.50-6.70: pure gravel 7.05-7.25: pure gravell	0.20		
Black clay (Qxfordian)	8.5	8888	
Limestone (Qxfordian)	9.9 10.0		

Piezometers

- 18 piezometers distributed throughout the plain (B1-B18)
- 16 new piezometers (B19-B34)
- 11 new piezometers along the Allaine river (PR1-PR11)

Springs

5 karst springs on the Buix plain

	mean annual discharge
La Madonne spring	0.5 L/s
Côtais Hügli spring	0.9 L/s
S10 spring	0.4 L/s
S11 spring	0.3 L/s
Volcan spring	0.8 L/s

Volcan spring

La Madonne spring
Allaine river

- affluent of the Doubs and the Rhône
- catchment: about 200 km²
- mean alt. of the catchment: 560 m
- mean annual discharge: 2.8 m³/s
- maximum monitored discharge: 72.4 m³/s

http://www.hydrodaten.admin.ch

01 June 2014

same and the same

What and who is the CHYN?

Centre for Hydrogeology and Geothermics CHYN University of Neuchâtel

Centre d'hydrogéologie et géothermie CHYN

BRIEF HISTORY

- Founded in 1963, offering a postgraduate course in hydrogeology
- Until 1999: one full professor
- Since 2009: 5 professors and appr. 45 collaborators
- Since 2009: Master in hydrogeology and geothermics

STRUCTURE OF THE CHYN

Centre d'hydrogéologie et géothermie CHYN

MAIN RESEARCH DOMAINS AT THE CHYN

Climate change and impact on groundwater recharge Impact of urbanisation on groundwater quality and quantity

Surface-water groundwater interaction

Integrated groundwater resource management in coastal and semi-arid/arid regions

Geothermics: energy production

Aquifer characterisation

Impact of agricultural activities on groundwater quality

AQUIFER CHARACTERISATION

- Characterisation of different aquifer types using multiple field methods in order to understand groundwater dynamics: geophysics, tracer tests, pumping tests, hydrogeological/geological mapping
- Geological and numerical modelling

IMPACT OF URBANISATION ON GROUNDWATER QUALITY AND QUANTITY

- Impact of waste disposal sites on groundwater quality and development of remediation techniques
- Protection zones and vulnerability mapping
- Investigation of processes involving chemical and biological contaminants in groundwater systems

state and the reader

IMPACT OF AGRICULTURAL ACTIVITY ON GROUNDWATER QUALITY AND QUANTITY

- Transport processes and degradation of nutrients and pesticides and their impact on groundwater quality using laboratory and field methods
- Investigations on impact of irrigation on groundwater quality and quantity by means of field investigations and modelling

SURFACE-WATER GROUNDWATER INTERACTIONS

- > Impact of groundwater exploitation on surface water bodies
- Impact of surface water quality on groundwater quality
- Role of groundwater for ecosystems

GEOTHERMICS

- Defining geothermic potential at regional scales for energy production
- > Development of field methods for exploration of deep geothermal resources
- Geochemical modelling of geothermal fluids
- Geological and thermic modelling of deep reservoirs
- Dimensioning of groundwater heat pump systems

CLIMATE CHANGE AND IMPACT ON GROUNDWATER RECHARGE

- > Impact of snow cover on groundwater recharge processes (climate change)
- > Quantification of groundwater recharge in different climatic conditions
- Interaction of surface-water groundwater during droughts

INTEGRATED GROUNDWATER RESOURCE MANAGEMENT IN COASTAL AND SEMI-ARID/ARID CONTEXTS

- > Seawater intrusion in coastal areas: development of management tools
- Quantification of groundwater recharge in arid and semi-arid conditions by field methods, remote sensing and modelling
- > Development of novel monitoring techniques in humanitarian contexts

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Introduction to hydrogeology I

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

Main questions to be addressed today

- What is hydrogeology and why is groundwater a precious resource?
- The water cycle and water sheds: how much water is available in average and where?
- What is an aquifer and what different types exist?
- What are the driving forces of groundwater flow?
- How do we 'measure' groundwater flow identification of groundwater flow systems

What is hydrogeology?

The discipline that studies the movement of groundwater, its origins, quantity and quality

What is groundwater and where do we encounter it in the everyday life?

hydro = the liquid which moves underground **geology** = the vessel in which the liquid moves

Why is groundwater a valuable resource?

- generally of good (or better) quality (than surface water)
- is far more constant in time: when the rivers run dry there is still groundwater

Surface water vs. groundwater

Surface water

 always has to be assumed to be affected by faecal contamination

Groundwater

- natural filtration occurs
 - eliminates microorganisms
 - eliminates also some chemical compounds
- may still contain some faecal contamination depending on how well the pumping well or the spring is protected
- karst springs and other springs that react strongly on precipitation events:
 - strong link with surface via caves or other preferential pathways
 - likely affected by faecal contamination in particularly during flood events

How is it embedded in the global water cycle?

Distribution of earth's water

Source: Igor Shiklomanov's chapter "World fresh water resources" in Peter H. Gleick (editor), 1993, Water in Crisis: A Guide to the World's Fresh Water Resources.

Distribution of water in Switzerland

Major difficulty with groundwater

We hardly ever see it – only in some places: springs, wells and boreholes are the only places where we can SEE the groundwater

The main features of groundwater

Unsaturated (vadose) zone: the pore spaces in the soil contain both water and air – it may be humid but water cannot be pumpedplants can use this water

Saturated zone: the pores are completely filled with water.

Pressure is above atmospheric pressure.

Water table: interface between the two zones – this is what we can measure

What is an aquifer?

- aquifer: a rock formation made up of permeable materials that can store, transmit and yield economically significant amounts of water e.g. sands, gravel, sandstones, limestones
- aquifuge: impermeable rock that is incapable of absorbing or transmitting significant amounts of water
 e.g. unfractured granites
- aquiclude: rocks that may absorb large amounts of water, but when saturated are unable to transmit it in significant amounts e.g. clays, marls
- aquitard: a relatively less permeable bed in an otherwise highly permeable sequence
 a calcareous sandstone in a karstified limestone

The main aquifer types primary vs. secondary porosity

Porous aquifers – unconsolidated deposits as found in river valleys

primary porosity (during sedimentation)

Unfractured Bedrock

Fractured aquifers –

crystalline: sedimentary, igneous, volcanic and metamorphic rocks

Karst aquifers -

Limestone / dolomite with highly dissolved fracture systems forming caves – subsurface rivers and lakes

h secondary porosity (tectonics, karstification)

200

Typical porosities of different rock types

Secondary porosity		Type of pore space	Total porosity	Efficient porosity
	Granite and crystalline bedrock	Joints and fractures	Low	0.1 - 5%
	Limestone	Solution cavities	Low to high	0.1 - 20%
	Basalt	Vesicles and fractures	High	5 - 30 %
	Cemented Sandstone	Between grains	Moderate to high	2 - 15%
	Cemented Conglomerate	Between grains	Moderate to high	2 - 20%
	Shales	Joints, fractures and clay minerals	Low	0.1 - 10%
	Unconsolidated Sand	Between grains	Moderate	15 - 25%
	Unconsolidated Gravel	Between grains	Moderate	10 - 20%
	Silt	Between grains	High	0.1 - 2%
	Clay	Clay minerals	High	0.1 - 1%

The **efficient porosity** n_e is defined the ratio of the volume of the "gravity mobile" water by the total volume of a sample:

0 0

Primary porosity

$$n_e = \frac{V_{mob.water}}{V_{total}}$$

Porous aquifers – unconsolidated sands & gravels

- highly productive aquifers
- good degree of filtration in general but
- may be vulnerable to surface contamination by infiltration if it is too shallow

Fractured aquifers – lithified rocks

- Water flows mainly in millimetric fractures or on fault zones (heavily crushed areas)
- Highest permeability in places where several faults meet
- The bulk of the rock has a very low porosity and permeability
- Fractures can be difficult to find

Fractures and fault zones are zones of weakness: often they form dominant features in the topography (e.g. valleys, lineaments)

example of intersecting faults in Afghanistan

Karst aquifers – limestone / dolomite

- large areas often without surface drainage
- streams from adjacent non-karst areas often sink underground via swallow holes
- residence times much smaller than in usual aquifers
- only few springs per surface area, but with high discharge, often > 10 m³/s (sometimes > 100 m³/s; e.g. Fontaine de Vaucluse)
- in response to hydrologic events (rainfall, snowmelt), karst springs often show rapid and strong variations of discharge, physicochemical and microbiological parameters
- extremely vulnerable to contamination

Source de la Lionne (Vallée de Joux, Switzerland) during low- (above) and high-flow conditions (below)

$$CaCO_3 + CO_2 + H_2O = Ca^{2+} + HCO_3^{-} + HCO_3^{-}$$

Typical karst features

Boca spring, Slovenia

Sinkhole Plain, USA

Main aquifer types in Switzerland

Porous aquifers:

- cover about 6 % of Switzerland
- contributes to about 35 % of the drinking water supply

all figures: FOEN / BAFU / OFEV

Main aquifer types in Switzerland

Fractured aquifers:

- cover about 78 % of Switzerland
- contributes to about 30 % of the drinking water supply

all figures: FOEN / BAFU / OFEV

Main aquifer types in Switzerland

Karst aquifers:

- cover about 16 % of Switzerland
- contributes to ca. 18 % of the drinking water supply

all figures: FOEN / BAFU / OFEV

From geology towards hydrogeology

- Translation of lithostratigraphy into hydrostratigraphy: hydraulic characterisation of the geological formations, identification of potential aquifers & aquicludes
- Characterisation of tectonic joints and bedding planes
- Influence of fault tectonics (normal, thrust and strike-slip faults) upon the hydrogeological system
- Influence of fold tectonics (anticlines, synclines, axial depressions and culminations) upon the hydrogeological system
- Landscape history and development of the system during geological time

(hydro)geological analysis is always a **3D + time** problem

From lithostratigraphy to hydrostratigraphy

Goldscheider & Drew 2007

From lithostratigraphy to hydrostratigraphy example of our Buix site

Typical unconfined groundwater conditions

Unconfined aquifer

Only a part of the aquifer is saturated. The top of the aquifer is the water table.

Typically, if you drill you will find the water at the depth of the saturated zone: the groundwater is not pressurised

Typical unconfined groundwater conditions

Typical confined groundwater conditions

Confined aquifer

The whole thickness of the geological formation is saturated. The top of the aquifer is a geological boundary with an aquitard. Water is pressurized.

Confined aquifer created by upwarping of beds by intrusions.

Typically, if you drill you will find the water at a deeper depth than the water level which you will measure (i.e. pressurised)

Transition from unconfined to confined aquifer

Water balance

Balancing: an important tool for any kind of management

 a water balance links recharge and discharge to changes in storage

- a balance can be written as a mass or volume change in time Δt
- better: a time rate of change of mass or volume *dM/dt* or *dV/dt*

Water balance

Water balance

Recharge of groundwater

the process by which water enters the groundwater system or, more precisely, enters the phreatic zone

Recharge of groundwater a/ infiltration of rainwater into the pores of the ground

primary porosity

secondary porosity

pores between grains

fractures and dissolved channels

Recharge of groundwater How is groundwater recharge quantified?

Simple water balance: I = P - ETP - R

Recharge of groundwater Rough estimates for different climatic conditions

		Temperate climate		Semi-arid climate		Arid climate	
		%	mm	%	mm	%	mm
Ρ	Total precipitation	100	500 – 1500	100	200 - 500	100	0 - 200
ETP	Real evapotranspiration	~ 33	167 – 500	~ 50	100 - 250	~ 70	0 - 140
	Groundwater recharge	~ 33	167 – 500	~ 20	40 - 100	~ 1	0 - 2
R	Surface runoff	~ 33	167 – 500	~ 30	60 - 150	~ 29	0 - 58

Recharge of groundwater b/ infiltration of surface water (river, lake)

If the water table is lower than the surface water elevation, surface water will infiltrate and recharge the groundwater

(USGS 1998)

Recharge of groundwater b/ infiltration of surface water (river, lake)

Discharge of groundwater

- the volumetric flow rate [m³/s] of a stream, spring, or groundwater system; or
- the water leaving a groundwater system by flow to surface water, to the land surface, or to the atmosphere.

Discharge of groundwater a/ discharge to springs

Springs develop where the water table and the topography intersect!

Measuring spring discharges for water balance!

Discharge of groundwater b/ wells and boreholes

Pumping well

• drinking water supply

Measuring pumping rates for water balance!

Typical pump-house in Switzerland

Discharge of groundwater c/ discharge to surface water bodies (river, lake, sea)

If the water table elevation is higher than the surface water elevation, groundwater will **discharge** to the surface water

Important for

- rivers (baseflow)
- wetlands, groundwater dependent ecosystems...

Difficult to measure!

Recharge, surface area & spring discharge *exercice*

Considering a semi-arid climate:

- a) calculate the mean annual discharge of the spring [L/s]
- b) calculate the daily groundwater recharge [mm/d]

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Basic concepts of groundwater exploration: geophysics

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

From groundwater exploration to groundwater exploitation

- The aim of this session:
- Present the basic hydrogeological approaches used in groundwater exploration in order to elaborate terms of reference for consultants and to evaluate hydrogeological reports
- Basic concepts of groundwater exploration: how does one look for new water sources?
 - Presentation of the most frequently used geophysical method (cf. field excercise): geoelectrics
- Basic concepts of pumping tests:
 - Step-draw-down tests (definition of well-yield)
 - Constant rate pumping tests and the most frequent interpretation method

First steps in groundwater exploration

- Surveying water points and groundwater levels
- Compiling existing geological and hydrogeological information
- Identifying potential aquifers and elaborate a water balance
- Identify potential groundwater pollution sources associated with the aquifers

→ Based on such an analysis, more localised investigations, such as geophysics, can be proposed for well implementation

The most commonly used geophysical investigation techniques for groundwater exploration

For well siting in porous or layered aquifers:

- Resistivity techniques: geoelectrical surveys, electrical imaging
- Ground penetrating radar

For well siting in fractured aquifers:

• Very low frequency electro-magnetic surveys (VLF)

Resistivity techniques

They are based on the response of the earth to the flow of electrical current. The **resistivity** (inverse of conductivity) of the subsurface depends primarily upon the **amount of water** in the rock, the salinity of the water and the distribution of the water in the voids. Therefore, measurement of resistivity is a combined measure of water saturation and connectivity of pore space and the electrical properties of the soil $(\rightarrow major difficulty!)$.

Two current electrodes A and B with the current lines (dashed) being perpendicular to the voltage equipotentials (bold lines), measured between to potential electrodes close to O.

Definition and units of resistivity: Ohms Law (applied to a cylinder)

sounding

The resistivity is a bulk measure of both the rock framework (and different types of rocks) and of the water in the pores. Therefore, the measured resistivity is called **apparent resistivity** ρ_{a} .

Different layouts for electrical resistivity soundings

Simple geometrical electrode layouts, such as the Wenner or Schlumberger arrays yield simple geometrical factors **K**.

The bigger the electrode spacing is, the deeper the investigation depth

VES (vertical electrical soundings): investigation depth (Id)

 \rightarrow A VES is carried out by increasing the distance between the injection electrodes, thereby investigating an increasingly large half-sphere in the subsurface.

Typical resistivity values of different earth materials

Resistivity values overlap! Correlation between permeability and resistivity – but not always unambiguous

Earth material	Resistivity [ohm m]		
Clay (marls) (AQUICLUDE)	10-70 (30)		
Sand (AQUIFER)	50-400 (100)		
Gravel (AQUIFER)	150-500 (200)		
Schist	10-10 000 (3000)		
Granites and basalt	10-50 000 (5000, 3000)		
Limestone and dolomite	100-10 000 (2000)		
Seawater	< 1		
Surface and groundwater	10-300		
Brackish water	0.05-10		

Qualitative interpretation of geoelectrical soundings

The apparent resistivities measured as a function of the electrode spacing between A or B and the mid-point O (OA=AB/2) yield different curves.

Qualitative interpretation: using the type curves one can interpret the succession of more or less resistive layers

Quantitative interpretation of geoelectrical soundings

Quantitative interpretation: inversion of the curves! Most delicate step for non-specialists AND for specialists!

How can a non-specialist evaluate if a geoelectrical inversion is useful or 'geopoetic'?

Main hypothesis of VES interpretation is:

→ PERFECTLY HORIZONTALLY LAYERED SUBSURFACE CONDITIONS (→ NO LATERAL CHANGES IN GEOLOGICAL CONDITIONS)!!!

Layer No.	ρ (Ohm-m)	Thickness (m)	Depth (m)	Expected Lithology
1	124.2	0.6	0.6	Top covered black Cotton soil
2	4.3	1.7	2.3	Moist silty soil (probable upper aquifer)
3	49.7	13.2	15.5	Drier fine grained sand
4	22.3	49.4	64.9	Medium to Coarse grained sand (alluvial deposit)
5	10	65.4	130.3	Moist medium to coarse grained sand (probable lower aquifer)
6	17.1	50.7	180.9	Medium to Coarse grained moist sand with silty soil (probable lower aquifer)
7	10.3	110.3	291.2	Medium to coarse grained moist sand(probable dipper aquifer)
8	19.3	144.8	436	Medium to coarse grained moist sand(probable deeper aquifer)
9	13.7			Alluvial formation

Example VES: Kakuma

What are the comments?

- a) How many measuring points vs. How many layers?
- b) How many layers according to the type curves?
- c) How is the fit?
- d) How do the resistivities correspond to literature values?

Geoelectrical curve of VES-3 with tables showing interpretation

Results from the geophysical exploration in the Kakuma area

Expected formation

Loam top soil + Laterites + Quarts + Granite gneiss

Weathered/fractured + Fresh granite

Expected bedrock depth:20-25m Expected aquifer zones:40-60m Expected drilling depth:50-65m Good

Geoelectrical profiling

 Is used to identify lateral changes in electrical resistivities

→Adapted to places where the subsurface is NOT PERFECTLY HORIZONTALLY LAYERED SUBSURFACE CONDITIONS: Identification of faults and structures

P. Falco et al. / Journal of Applied Geophysics 93 (2013) 33-42

Geoelectrical profiling

Falco P. et al., (2013)

Electrical resistivity tomography (ERT)

A combination of vertical electrical sounding and profiling

Falco P. et al., (2013)

Electrical resistivity tomography (ERT): Example Kakuma

Electrical resistivity tomography (ERT). Example Djibouti

TORs for geophysical investigation should explain

- Which method is used: why, where with which expected outcome? (e.g. what kind of geophysical signal is expected for the 'aquifer horizon'?)
- Which equipment and which interpretation methods are used?
- All raw data has to be contained in the reports (this is what the client has actually paid for!)

Let's try it ourselves in the field now !!!!
University of Applied Sciences and Arts of Southern Switzerland Water, Sanitation and Hygiene Competence Centre

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

SUPSI

Bacteriological Analysis of Water UNHCR Applied Hydrogeology training (SDC-CHYN-UNHCR) June 1 to 6, 2014

Claudio Valsangiacomo (www.supsi.ch/go/wash)

- 1. Introduction
- 2. A conceptual framework for implementing the Guidelines
- 3. Health-based targets
- 4. Water safety plans
- 5. Surveillance
- 6. Application of the Guidelines in specific circumstances
- 7. Microbial aspects
- 8. Chemical aspects
- 9. Radiological aspects
- 10. Acceptability aspects: Taste, odour and appearance
- 11. Microbial fact sheets
- 12. Chemical fact sheets
- 13. Annexes

Guidelines for Drinking-water Quality

FOURTH EDITION

Types of portable laboratories

Del agua kit for water testing

- Only turbidity, free residual chlorine and coliforms.
- More difficult to use than SHA water lab (preparation of sterile artificial media.

SHA kit for water testing

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC

Main analysis parameters during emergency

Analysis	Analyte	Sample	Result	Requirements
				(WHO)
Bacteriologic al analysis with Compact Dry EC	<i>E. coli</i> as indicator of fecal contamination	100 ml water (sterile sample collection, analyze within 24 h, no thermal shocks, use thiosulfate soln. if chlorine treated).	CFU/100 ml (Colony Forming Units in 100 ml)	0 CFU/100 ml
Free residual chlorine	Free residual chlorine (FRC)	Just fill the vial as required (analyse on the spot, no sterile conditions required)	ppm (parts per million) or mg/L	 > 0.5 ppm (for humanitarian situations > 0.2 ppm (BUT: Turbidity requirements satisfied)
Turbidity	Turbidity	Just fill the turbidimeter (analyse on the spot, no sterile conditions required)	NTU (Nephelometric Turbidity Units)	< 5 NTU (for humanitarian situations < 10 NTU)

Free residual chlorine (FRC) and Turbidity

FRC and turbidity

lf

A. Free Residual Chlorine > 0.5 ppm (> 0.2 ppm for humanitarian situations)

and

B. Turbidity < 5 NTU (< 10 NTU for humanitarian situations)

Then: No need for bacteriological water testing

P.S. Be sure the pH is within the ideal range 6.5 – 8.5

Chlorine stock solutions in a Cholera Treatment Centre

SOLUTION A	SOLUTION B	SOLUTION C
0,05%		2%
0,05%		2%
Main, peau, vaisselle	Sols, vêtements, literie, latrines	Excreta, pédiluves, cadavres
Ajouter 1 cuillère à soupe dans 20L d'eau	Ajouter 1 cuillère à soupe dans 5L d'eau	Ajouter 2 cuillère à soupe dans 1L d'eau

Chemical versus Bacteriological contamination

Chemical versus Bacteriological contamination

- 1. Presence of *E. coli* means presence of fecal contamination, during Cholera or other diarrheal epidemics the risk to get sick is high
- Presence of total coliforms indicates bad disinfection practice of water (only *Escherichia coli* accurately indicates fecal contamination!).
- 3. Presence of chemical contamination has a variety of different meanings. Usually risk to get sick is very low (if consumption only for

short period)

Reference values for chemical contamination: basics of toxicology

With experiments on animals LOAEL (Lowest observed adverse effect level) and NOAEL (No observed adverse effect level) are determined. The animals are fed for the whole life with a specific concentration of the substance.

Extrapolation of reference value from experimental toxicology – Example for Hg residues in water

Guideline value for chlorine in water

- Guideline values are derived for many chemical constituents of drinking-water and normally represent the concentration of a constituent that does not result in any significant risk to health over a lifetime of consumption.
- The guideline value for free residual chlorine in drinking-water is derived from a NOAEL of 15 mg/kg of body weight per day, based on the absence of toxicity in rodents that received chlorine as hypochlorite in drinking-water for up to 2 years. Application of an uncertainty factor of 100 (for inter- and intraspecies variation) to this NOAEL gives a TDI of 150 µg/kg of body weight. With an allocation of 100% of the TDI to drinking-water, the guideline value is 5 mg/litre (5 ppm).
- It should be noted, however, that this value is conservative, as no adverse effect level was identified in this study.
- Most individuals are able to taste chlorine or its byproducts (e.g. chloramines) at concentrations below 5 mg/litre, and some at levels as low as 0.3 mg/litre.

Extrapolation of reference value for microbiological agents

Koch postulates:

- 1. Microorganism in the sick host
- 2. Grow the microorganism
- 3. Inoculate the microorganism in a healthy host and observe symptoms
- 4. Isolate the microorganism again

Bacteriological analysis, fecal indicators

Why we do not measure pathogens

- Numerous water borne pathogens
- Individual pathogen numbers may be too low to detect in a reasonable sized water sample
- Isolation and detection of some pathogens can take several days, weeks, or months
- Absence of one particular pathogen does not rule out the presence of another

Infections

Infection		Pathogenic agent
Diarrhoeas and Dysenteries	Campylobacter enteritis	Bacterium
	Cholera	Bacterium
	E. coli diarrhoea	Bacterium
	Salmonellosis	Bacterium
	Shigellosis (bacillary dysentery)	Bacterium
	Yersiniosis	Bacterium
	Rotavirus diarrhoea	Virus
	Giardiasis	Protozoon
	Amoebic dysentery	Protozoon
	Balantidiasis	Protozoon
Enteric fevers	Typhoid	Bacterium
	Paratyphoid	Bacterium
Poliomyelitis	Conception of the Conception of Conception	Virus 👘
Hepatitis A		Virus
Leptospirosis		Spirochaete
Ascariasis		Helminth
Trichuriasis		Helminth

crysporodium

19

Sanitary and water diseases

Transmission routes and barriers

Simple and effective interventions at each stage of transmission

Sources of contamination

Sources and impacts of contamination

- \rightarrow Human origin sources or after a natural disaster
- \rightarrow Non-exhaustive list

Drinking water and intense pesticide uses : risks of pollution

Controlling transmission

Preventative measures

- \rightarrow High efficiency
- $\rightarrow\,$ Simple and low-cost actions

→ Prioritize large quantity of water (medium quality) over low quantity of water (high quality)

Excreta management	1
Hand cleaning	
Sufficient water quantity	y
Good water quality	

% of transmission reduction with various preventive methods

Indicator Organism Concept

- Correlated to the presence of pathogens
- Population large enough to isolate in small water samples (100 mL)
- Rapid
- Inexpensive
- Safety, not culturing pathogens

Fecal indicators in water

Total Coliforms 37 ° C		}	Total coliforms: ca. 10% of bacteria found in human and animal intestinal wastes. Some coliforms may grow in decaying organic matter, unreliable indicator of fecal contamination. Fecal coliforms: the subset includes <i>E. coli</i> but
	Feca 44° (I Coliforms E. coli 44° C	can also include other bacteria that grow at this temperature. Some of these are not necessarily associated with fecal contamination. Generic <i>E. coli:</i> in the intestines of animals and humans. The presence of generic <i>E. coli</i> provides the best evidence of fecal contamination.

•Human feces: $1 g = 12x10^9$ bacteria

•Bacteriological water analysis is expressed as CFU/100ml

Standard operating procedure for bacteriological analysis of water

Analysis of E.coli and Coliforms

Compact Dry EC

Lot 019803

Exp. 02/2010

Storage +1~30°C

Produced by NISSUI pharma

Enzyme Substrate or Chromogenic Substrate Method

- Coliforms have the enzyme
 - $-\beta$ -D-galactosidase
 - Can be detected with Magenta-Gal artificial sugar: Pink
- E. coli has the enzyme
 - β-glucuronidase
 - Can be detected with X-Gluc artificial sugar: Blue

Membrane Filter Method

- Rehydrate plate with 1 ml sample water
- Filter 100 ml water through a 0.45 µM membrane filter
- Place membrane filter on selective media
- Close lid and incubate up-side down at 37.0 ° C – 44.5 ° C depending on which indicator you want to test (total coliforms or E. coli)
- Count pink and blue colonies and express result in CFU/100 ml (Colony Forming Units in 100 ml of water)
- In your samples always put a positive (fecal contaminated) and negative sample (mineral water from the bottle).

Rehydration

Lift the lid and drop 1 ml of water sample in the centre.

Let diffuse water over the surface of ca 20 cm^2

Incubation for 24 h (at least 18 h) at 37 ° C

Counting colonies and interpretation of results

Count Colony Forming Units (CFU)

FIIMEN

Maximum 100 CFU, if more than TNTC (too numerous to count)

... water is a symbol of purification... why should we purify it? why do we pollute it?

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Basic concepts of groundwater protection

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

Main questions to be addressed today

- Why do we need groundwater protection?
- How do we define groundwater protection zones?
- Why is groundwater monitoring important?

• Delineate groundwater protection zones and design a monitoring scheme for our Buix site

The Globe and Mail (Canada's national newspaper), May 26, 2000

The « Walkerton-tragedy »:

- Walkerton (Ontario, Canada): ca. 5000 people
- May 2000: 2300 people became ill and 7 died as a result of microbial contamination of the water supply
- principal pathogens: *E. coli* 0157:H7 and *Campylobacter jejuni*

Reason: grossly inappropriate protection zones. The nature of karst had been totally ignored and inappropriate investigative methods were used.

- aquifer at Walkerton: about 70 m of flat-bedded Paleozoic limestones & dolostones, overlain by 3 to 30 m of till
- the area is rural, with cattle & dairy farms
- hydrogeologists measured hydraulic properties of the aquifer & derived the 30-day protection zones by modelling
- protection zones: no more than 300 m in Ø & no bacterial contamination sources within any of them!

Monitoring of microbial parameters (June – August 2000):

- well 5: heavily contaminated by indicator bacteria
- wells 6 & 7: 34 % & 10 % of samples positive for total coliforms

Photos & figures from this example: D. Ford (conference Giulin 2009)

Subsequent investigations found that there were many indications that the aquifer is karstic:

 correlation between bacterial contamination in wells and antecedent rain rapid recharge and flow to wells;

130 mm of rain fell over four days when the chlorination system was not working properly

Subsequent investigations found that there were many indications that the aquifer is karstic:

- correlation between bacterial contamination in wells and antecedent rain rapid recharge and flow to wells;
- localised inflows to wells which video images showed to be solutionallyenlarged openings on bedding planes;

Subsequent investigations found that there were many indications that the aquifer is karstic:

- correlation between bacterial contamination in wells and antecedent rain rapid recharge and flow to wells;
- localised inflows to wells which video images showed to be solutionallyenlarged openings on bedding planes;
- presence of springs with discharges up to 40 L/s;
- rapid changes in discharge & chemistry at these springs following rain;

• ... tracer tests gave groundwater flow velocities about one hundred times faster than the modelling results

source for the pathogenic bacteria could have been much further from the wells than the earlier modelling had indicated

What can be learned from this example...

regarding...

• groundwater protection?

• groundwater monitoring?

Few words about groundwater monitoring

- discharge / water level
- temperature
- electrical conductivity
- turbidity (or better PSD)
- organic carbon (DOC/TOC)
- major ions
- stable isotopes
- chemical contaminants (pesticides, chlorinated solvants,...)
- radon / CO₂
- water quality indicator bacteria *(E. coli*, enterococci, mesophilic aerobic bacteria)
- microbiological contaminants (pathogenic bacteria, viruses, protozoa)

standard hydrogeological parameters

idem for dynamic hydrogeological systems

View of the monitoring equipment installed at a karst spring (Yverdon-les-Bains, Switzerland)

Few words about groundwater monitoring

«Imagine trying to understand a Beethoven symphony if one could only hear one note every minute or two! That is what we are trying to do when we infer the hydrochemical functioning of a catchment from weekly or monthly grab samples. Or imagine trying to understand a symphony from a high-fidelity recording of just one of its crashing crescendos. That is what we are trying to do when we analyse high-frequency samples of an individual storm event. Continuous high-frequency monitoring of catchment hydrochemistry will require significant resources and tenacity. In our view, however, what we stand to learn is well worth the effort. If we want to understand the full symphony of catchment hydrochemical behaviour, then we need to be able to hear every note.»

(Kirchner et al. 2004)

Manual vs. continuous measurements

Why do we need groundwater protection?

	Settlement	Sanitation installations (pit latrines, septic systems)	Leaking sewage systems	Waste water discharge	Waste deposits and landfills	Runoff from sealed surfaces	Agriculture	Animal Husbandry	Crop cultivation	Industry	Waste water discharge	Waste disposal	Storage of organic liquids	Energy production and storage	Storage and distribution of fuels	Mining activity	Geological sources
Microbial																	
Pathogenic microorg.																	
Viruses		Х	Х	Х													
Bacteria		Х	Х	Х				Х									
Protozoa		Х	Х	Х				Х									
Chemical compounds																	
Inorganic compounds																	
Nitrate, Nitrite		Х	Х	Х				Х	Х								
Fluoride																	Х
Arsenic																Х	Х
Lead					(X)	Х					Х	(X)				Х	
Metals (Pb, Cr, Cd, Zn)					(X)	Х					Х	(X)				Х	
Organic compounds					6.0												
Petroleum					(X)						Х	Х	Х		Х		
nydrocarbons (e.g.																	
DIEΛ, PAH)					(V)						v	v	v				
chlorinated					(٨)						۸	۸	Λ				
hydrocarbons)																	
Pesticides									X								

Point source contamination

Potential source of contamination have to be located downstream of a water supply well or spring!

Remediation is possible if the source is identified!

sewage plant in karst area & wastewater release into river

leaking sewage pipe

Diffuse contamination

Mostly related to agricultural activity and irrigation: fertilisers (nitrates), pesticides, increased salinity

Remediation is often difficult – even if activity stops the contamination can still continue for a long time!

Concept of groundwater protection origin, pathway & target

- the origin is the assumed place of release of a contaminant, usually the ground surface
- the pathway is the assumed flow path of a contaminant from the origin to the target
- the target is water, which has to be protected, either the whole groundwater body (resource) or a drinking water well or spring (source)

Concept of groundwater protection origin, pathway & target

Resource protection:

- origin: land surface
- pathway: unsaturated zone (vertical)
- target: groundwater surface

Source protection:

- origin: land surface
- pathway: unsaturated (vertical) and saturated (lateral)
- target: spring or well

Concept of groundwater protection Four basic questions

- travel time of the contaminant
- maximum concentration of the contaminant
- duration of the contamination
- amount of the contaminant

Groundwater protection zones

Wellhead protection zone

- area immediately surrounding a pumping well or a tapped spring
- protection from any direct impact, mechanical damage, or contamination
- activities not directly related to drinking water supply are forbidden
- zone I extends generally 10 – 20 m around the well or spring

Groundwater protection zones

Inner protection zone

- prevents drinking water contamination with faecal and pathogenic microorganisms
- activities releasing microbial contaminants (e.g. application of liquid manure) are prohibited
- polluting land-use practices and construction works that might obstruct groundwater flow are restricted

- primary criterion for the delineation of this zone: travel time
- hydraulic methods (from simple calculations to sophisticated numerical groundwater flow models) & artificial tracer tests

Groundwater protection zones

Outer protection zone

- prevents chronic contamination with persistent and mobile contaminants
- ensures sufficient time and space to react to an accidental contaminant release
- facilities that pose a threat to groundwater (e.g. gas stations, wastewater seepage) are not allowed

Definition of protection zones requires detailed knowledge of groundwater flow direction!
Wellhead protection

- wastewater infiltrates underground & reaches well through aquifer
- filtration / inactivation processes will partly attenuate contaminant

potentially contaminated surface water must not flow towards the well but must be drained away

- poor well construction
- pathogens can travel down into the well and reach drinking water directly
- no attenuation
- vital that well is adequatly protected

Groundwater protection zones - Switzerland

- S1 10 m around the well / spring
- S2 at least 100 m upstream from the well / spring and at least 10 days travel time

S3 at least twice S2

How about karst and fissured aquifers?

- in porous aquifers, the 10-day line of groundwater travel time delimits the inner protection zone S2 (Germany 50, Austria 60, Ireland 100 days)
- flow velocities in porous aquifers: < 10 m/day
- inner protection zones in porous aquifers extend therefore only about 100 m (minimum)
- flow velocities in karst & fissured aquifers: 10 500 m/h
- inner protection zones would extend up to 120 km and comprise the whole catchment area
 - this would be good for groundwater protection, but the resulting land use restrictions would be inacceptable!

Few words about vulnerability mapping

- the vulnerability takes into acount the geological and hydrogeological characteristics of an area (high vulnerability = low natural protection against contamination)
- at least the «vulnerable» zones where contaminants can easily enter the groundwater should be protected
- a vulnerability map aims on a compromise between land use and groundwater protection
- water protection is priority in the highly vulnerable areas; land use can be allowed in less vulnerable zones
- karst and fissured aquifers are highly heterogeneous
 - groundwater protection zones in karst and fissured areas that are delineated on the basis of a vulnerability map look like a mosaic

General conclusions

Supply of save drinking water from aquifers (or other freshwater resources) requires a fourfold approach:

- 1. Minimising pollution: wastewater treatment, reduced and sensible use of liquid manure, etc.
- 2. Groundwater protection zoning: land-use restrictions in the most vulnerable zones
- 3. Water quality monitoring: e.g. karst springs require eventbased, intelligent monitoring strategies (continuous measurements preferred)

hydrogeology

4. Drinking water treatment: filtration, chlorination, ozonation, UV treatment, etc.

CHYN Centre d'hydrogéologie et de géothermie CHYN TRAINING COURSE FOR

UNHCR WASH STAFF

APPLIED HYDROGEOLOGY

from field investigation towards sustainable water resources management

June 1 to June 6, 2014

Basic concepts of aquifer characterisation: pumping tests

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Agency for Development and Cooperation SDC ellen.milnes@unine.ch michiel.pronk@unine.ch

From groundwater exploration to groundwater exploitation

- The aim of this session:
- Present the basic hydrogeological approaches used in groundwater exploration and in well testing in order to elaborate terms of reference for consultants and to evaluate hydrogeological reports
- Basic concepts of groundwater exploration: how does one look for new water sources?
 - Presentation of the most frequently used geophysical method (cf. field excercise): geoelectrics
- Basic concepts of pumping tests:
 - Step-draw-down tests (definition of well-yield)
 - Constant rate pumping tests and the most frequent interpretation method

From groundwater exploration to well testing: Pumping tests

- Are part of the implementation of a new well
- Yield the 'ID'card of the well
- The tool to define the exploitation scheme of a well
- The tool to obtain information about aquifer characteristics (permeability, storativy-porosity)

The aim of this session:

 \rightarrow Different test types are used for different purposes: which one is used for which purpose and how is it carried out and interpreted (what should you find in a report)?

What happens around a well when pumping takes place?

Pumping well **Cross-sectional view** of the expanding depression cone with time around a pumping well $t_0 \rightarrow$ Water level at rest (SWL) $t_1 \rightarrow$ DWL (t_1) $t_2 \rightarrow$ DWL (t_2) $t_3 \rightarrow$ DWL (t_3)

Plan view of the expanding depression cone with time around a pumping well

→The reaction of a well to a given discharge rate yields a relationship between the time, discharge rate and dynamic water level which are 'typical' of the well and its surrounding aquifer

The two major types of pumping tests

Step draw-down test (usually 1 day):

- Specific draw-down
- Qualitative assessment of borehole performance (yield-draw-down)
- 'Safe yield' of the well and pumping rate for constant rate pumping tests
- \rightarrow Limitations:
 - \rightarrow Pump which is capable of varying the discharge rate
 - \rightarrow Not good at predicting longterm behaviour of the well
 - → May vary considerably when carried out under different hydrological conditions

Constant rate pumping tests (from 1 day to several weeks, usually 72 hours):

- Aquifer transmissivity (permeability)
- Storage coefficient (porosity in non-confined conditions)
- Qualitative assessment of ability to maintain the planned yield
- \rightarrow Limitations:
 - \rightarrow Difficult to maintain a constant discharge rate
 - \rightarrow May yield different results under different hydrological conditions
 - \rightarrow Requires a good evacuation system

Step draw-down test

Step-wise increase of the discharge rate and waiting until the water level is stable: drawdown= (steady water level at rest – steady water level during pumping)

Main difficulty: defining the discharge rate range of the test before having any information!

Step draw-down tests: characteristic curve

A step-draw-down test after well construction yields the 'ID'card of the well. For instance used to identify aging of a well.

Characteristic curve of the well: Stabilised draw-down of each step versus discharge rate

Graphical interpretation method: 'safe yield' of the well

The CHYN well in Buix and its characteristic curve

The confusion surrounding the 'safe yield'

The notion 'safe yield' is used in two ways:

- →To describe the 'safe yield' of the well with respect to its aging potential: depends on the well construction in combination with the aquifer
- →To describe the 'safe yield' of the aquifer, referring to a longterm exploitation: depends on the capture zone of the well and the recharge of the aquifer

The 'safe yield of the well' and the 'safe yield of the well' are NOT the same!!!

Constant rate pumping tests

Plotting the draw-down during a pumping test versus the logarithmic time

Method of Jacob:

If there is a well-defined linear correlation, the slope between to points A and B can be used to calculate the transmissivity T, which is the product of the aquifer thickness (e) and the hydraulic conductivity (K):

If draw-down is measured in a observation well, the Storativity can also be obtained:

$$T = \frac{Q}{4\pi(s_B - s_A)} \ln(\frac{t_B}{t_A})$$

T: transmissivity $[m^2/s] =$ Q: yield $[m^3/s]$ $s_{A,B}$: draw-down [m]at respective times $t_{A,B}[s]$ **T=K*e** K=hydraulic conductivity [m/s]**e=thickness of the aquifer** [m]

Deviations from the Jacob line

- \rightarrow Perfectly horizontal flow towards the well
- → Homogeneous and semi infinite aquifer without regional groundwater gradient
- → The well is constructed all the way through the aquifer (if not, the aquifer thickness in the formulation is often replaced by the length of screened section)

Calculate the transmissivity and hydraulic conductivity in the Buix aquifer

Let's try it ourselves in the field now !!!!

Well construction and rehabilitation

Resume Frank Gugger

- Studies of geology, University of Bern, Switzerland
- Work as a geologist in Switzerland
- 2 years as environmental geologist in California, USA
- 2006 2011 Stump Foratec AG
- 2012 KIBAG Bohrungen AG

KIBAG BOHRUNGEN AG

- KIBAG: Construction company specialiced road construction, foundation, recycling, concrete production, drilling and more.
- Total KIBAG 1500 employees, drilling/geotherm approx. 60 employees
- Since 1970 well drilling, geotechnical drilling and testing / measurements

Programm

Planning
 Objectives and investigation

Planning Drilling Materials Design Development Rehabilitation Drilling Various types and drilling methods

 Materials for well construction Well casing, screens, seals, centralizers

- Design Design, gravel / filter pack, position of screen
- Development
 Objective, methods and tools
- Rehabilitation, troubleshooting Problems, reasons of well problems, solutions

Planning of a well

Protection of the ground-water (quality and quantity)

Cost effective solution (construction and maintenance)

OBJECTIVES

•

- High production rate
- Long lasting (> 20 years)
- Planning
- Drilling
- Design
- Development •

Rehabilitation

Importance to know the lithology in detail to design the well properly (drilling method, slot opening, diameter and length, gravel pack, sealings ...)

Questions / Discussion

PRELIMINARY INVESTIGATION

- Description the lithology
- Literature studies
- Local observation, nearby wells
- Exploration borehole with pumping tests for extended projects
- >>> consult a hydrogeologist

Materials

Drilling set for shallow wells

Hand auger equipement Riverside and gravel drill bit

Planning Drilling Materials Design Development Rehabilitation

Hand dug wells, with well liner

handbook

Hand dug wells

Digging deep wells can be dangerous

- collapse of the sides (dig inside precasts concrete liners)
- tools falling from the surface in the well (wear hard hat)
- lack of oxygen in the well (use ventilation)
- poison exhaust gases from a generator used to pump out water (take wind direction into account)
- accidents while climbing in the well (use a safety harness and tripod)

Planning Drilling Materials Design Development Rehabilitation

Drilling set for shallow wells

Pros

- Low cost, easily operated equipment
- No highly qualified personal required for operation and maintenance

• Can easily be fixed on-site

Less dangerous than hand-dug ring wells

Drilling

Planning

Materials

Design

Development Rehabilitation Cons

• Not possible in hard rock

Questions / Discussion

 Hard to get through gravel and stone layers

Average 20 – 30 m, diameter approx. 80 mm in sand

Jetted wells (wash borings)

Circulation pump

Needs very little equipment

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

 Suitable in sands, unconsolidated silts and clays, very fine gravels (alluvial deposits beside rivers)

 Temporary casing might be required to prevent hole from collapsing

• Diameters up to 150 mm

Settling pipe Water table

Single core drilling

• Max. diameter approx. 300 mm

Planning Drilling Materials Design Development Rehabilitation

Slow and relatively costlyContinuous and relatively

"undisturbed" samples

Direct circulation drilling

Max. diameter approx. 300 mm

Difficult to take distinctive

Planning Drilling Materials Design Development Rehabilitation

samples
Rising speed of water / air is critical, often additives needed (bentonit)

Questions / Discussion

 Good solution for deep wells with small diameter. Using a down-hole hammer.

Reverce circulation drilling

Planning Drilling Materials Design Development Rehabilitation

 Small diameter of the double wall drill, rods lead to high velocities and less problems to rise the cuttings

- Needs less drilling fluid and therefore, smaller sedimentation pits
- Needs less additives
 - Sampling of the cuttings is easier and more reliable

Down-hole hammer

Planning Drilling Materials Design Development Rehabilitation

Cable excavator with rotary table

• Large diameters up to 160 cm possible

Planning Drilling Materials Design Development Rehabilitation

- Limited to 30 40 m
- Can not penetrate bedrock formation.
- Rehabilitation Needs very heavy equipment

Common Drilling Tools

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

(video youtube)

Drill rigs

Planning Drilling Materials Design Development Rehabilitation

Samples for geological description 啦

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Measuring of water level

Water well design

KIBAG

General well elements (simplified)

Filter tubes / screens

Wire wrapped vs. simple slotted screens

Wire wrapped screens have approx. 2– 5 times higher flowrates than slotted screens surface of slots / total surface of tube

1) wire wrapped screens

2) steel bridge-slot screens

3) simple slot screens

KIBAG

Slot opening vs. max. flowrate

Flow rage /slot opening (exercise)

Higher entering velocities than 3 cm/s lead to:

- More sand in the well
- Turbulent current when ground-water enters the well and subsequently leads to incrustation

Excercise

EXAMPLE (# OF ROWS)

4 ROWS 90 DEGREES APART

Filtertube inox, diam. 180 mm,
 4 rows of slots per circumfer-ence, 200 slots per row and filter of 3 m, slots 85 mm x 1 mm.

Johnson Screens

- Percent opening of tube: %
 - Max. yield per m:l/min

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Factors on yield of a well

	Basis					Variable		
	Ø filter: 200 mm, s = 3.0 m					<i>permeability coefficient</i> (is a measure of the ability of a porous material) to allow fluids to pass through)		
	kf = 1.0 x 10 ⁻³ [m/sec]					Q = 20.1 [l/sec]		
	kf = 1.0	x 10 ⁻⁴ [m/sec]				Q = 2.4 [l/sec]		
Planning	kf = 1.0	x 10 ⁻⁵ [m/sec]				Q = .028 [l/sec]		
Drilling	<i>Kf</i> = 1.0)*10 ⁻³ [m/sec], s	= 3	3.0 m		diameter filter		
Materials	diamete	r filter 150 mm				Q = 19.4 [l/sec]		
Design	diamete	diameter filter 400 mm				Q = 22.1 [l/sec]		
Rehabilitation	diameter filter 600 mm					Q = 23.4 [l/sec]		
Questions /	$kf = 1.0*10^{-3} [m/sec], \emptyset$ filter: 200 mm, s = 3.0 m					total thickness	of aquifer	
Discussion	h = 10.00 m					Q = 20.10 [l/sec]		
	h = 20.00 m					Q = 43.80 [l/sec]		
	h = 50.00 m					Q = 117.9 [l/sec]	Dupuit	
			(Q	Yield [m3/s]		$h_{GW}^2 - h^2$	
Material		Permeability (m/s)	ł	n GW	Thickness aqu	ifer	$\mathbf{Q} = \pi \cdot \mathbf{K}_{\mathbf{f}} \cdot \frac{\mathbf{D} \cdot \mathbf{K}_{\mathbf{f}}}{\ln \mathbf{R}/\mathbf{r}}$	
well-sorted gravel		10 ⁻² to 1	ŀ	n	Thinckness ag	uifer after pumping		
well-sorted sands, glacial outwash		10 ⁻³ to 10 ⁻¹	F	R	Radius cone o	f depression	s = n _{GW} - n	
silty sands, fine sands 10 ⁻⁵ to 10 ⁻³			r	r	Radius filter Sichardt		Sichardt	
silt, sandy silts, clayey s	ands, till	10 ⁻⁶ to 10 ⁻⁴			Differenz arou	ndwater level		
clay		10 ⁻⁹ to 10 ⁻⁶	S	5	pumping / befo	pre pumping	$\mathbf{K} = 3000 \cdot \mathbf{S} \cdot \sqrt{\mathbf{K}} \mathbf{f}$	

Slot size

Filter should retain approx. 40 % of the aquifer material. Filter should retain approx. 90 % of the gravel pack, if well is built with gravel pack

!Various other rules / solutions exit !

Example of slot size

Filter should retain approx. 40 % of the aquifer material and 90 % of the filter pack

Design Materials Development Rehabilitation

Questions / Discussion

Filter / Gravel pack

 Gravel pack / filter pack prevents sand or find sand from migrating from the aquifer into the well

Design Materials Development Rehabilitation

Questions / Discussion

- The filter pack should let pass approx. 40 – 60 % of the fines (danger of clogging)
- A filter pack is coarse sand or fine gravel that is placed between the borehole wall and screen
- A filter pack should be installed in all wells except of those completed in rock or gravel
- The grain size depends on the grain size of the aquifer
- Silica-based material since it will not be dissolved, washed, uniformed in size, well rounded (less compact filling).

Filter / Gravel pack

Rule of thumbs for filter pack

Filter / Gravel pack

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Standard filter pack design with small diameter grains to prevent fins and annulus seal material (grout / expandable clay) to migrate in the filter pack

Gravel pack various horizontally

Gravel pack various by depth

Centralizers

For centering screen and casing columns in a core-hole it is recommended to use centralizers

Important

Centralizer should be positioned:

- above and below filtered section
- below the sleeve (so it can't glide)
- never on the filter (may break filter when pulling casing)

Grouting and sealing clays

Sealing to prevent surface water or contamination from entering the well or separates two groundwater layers

- Sealing clays
- Cement grout, bentonite

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

The formation seal must be effectively placed to prevent contaminated surface run-off from infiltrating into the well.

Pumps and pumping rates

Suction pump

Submersibel

Handpumps (suction and subm.)

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

	Max depth	Max Q (yield)
Suction pump	6 m (7 m)!	max yield pump
Submersible pump	several 100 m	max yield pump
Hand pump (suction)	6 m (7 m)!	Approx. 10 -45 l/min
Hand pump (lift, diaphragm	60 m	4 – 45 l/min _{NSP e.U.}

Submersible pumps

Examples with Grundfos pumps

	Volt	Amper	Ø pump	Ø filter	weight	C	2	depth
	[V]	[A]	[mm]	[inch]	[kg]	[m3/h]	[l/min]	[m]
SP 14A-10	380	15	101	4.5 "	27	14	230	46
SP 14A-25	380	25	101	4.5 "	68	14	230	130
SP 27-5	380	15	136	6 "	34	27	450	36
SP 46-6	380	25	145	6 "	62	46	770	50
SP 60-11	380	50	147	6 "	96	60	1000	85
SP 160-4	380	110	203	8"	220	160	2666	80

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Reduction of yield

- Material, length and diameter of pump riser tube
- Material, length and diameter of hose
- Valves, curves e.g.

Important:

Proper choice of diameter and length of electric cable

Placing of the filter and pump

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Very thick aquifer

Shallow aquifer

Aquifer with finegrained intermediate layer KIBAG

General remarks

- A longer filter leads to slower entering velocities in the groundwater well. As a result we have less problems with sand and the well lasts longer (to optimize for economical reasons).
 - Avoid groundwater draw-down into the screened section. Connection the groundwater with air leads to incrustation, biofilm e.g.
- Questions / Discussion

Development Rehabilitation

Planning

Drilling Materials

Design

- Never put a pump in the section of the screen (especially on small diameter wells). It will benefit the suction of sand and other fines due the high lateral velocity of the suck in of the groundwater.
- Avoid to connect different groundwater horizons. You could pollute a clean aquifer.

(after completion of borehole and during rehabilitation)

The well development is important to:

- Remove the fine material in the vicinity of the well and so to improve the permeability and the yield of the well
- If the borehole was drilled with drilling fluid (bentonite mud) to remove the coated borehole wall
 - Prevent sand pumping and therefore, increases the service life of
- the pump cylinder and well
- Rehabilitation Remove organic and inorganic material which may inhibit effective well disinfection
 - Remove biofouling, oxidation products or fines during rehabilitation projects

Methods for well development

- Intermittent pumping, pumping beyond the production rate
- Air lift pumping
- Jetting with rotated tool
- Using surges blocks (piston)

Planning

- Drilling
- **Materials**
- Design

Development

Questions / Discussion

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

The key development objectives are

- to remove remnant drilling fluid and cuttings from the borehole wall, formation, filter pack and well screen
- create an optimum interface between the filter pack and the water-bearing formation.

(Handbook of GW Development, Roscoe Moss Company

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Reduction of the lowering of the water table in the well and the gradient of the cone of depression as a result of intense well development >>> higher yield of the well.

Well development takes very few hours up to one day, depending on the well and the geology and the demands of the client.

Planning Drilling Materials Design Development Rehabilitation

Fig. 102 Formation of grain arches caused by suction desanding in one direction only.

Questions / Discussion

Fig. 104 The finer grains are drawn into the screen by repeated suction, following impacts.

Fig. 103 Dispersal of grain arches through alternating impact desanding.

Washer/sleeve Overpumping well with a higher pumping rate than the production rate Design intake opening **Materials** Simple but not very effective Development Rehabilitation Washer/sleeve • High rate of wear on the pump (abrasion by fines) РТ Ouestions / Leaves well only sand free but not really Discussion developed, the water moves only in one direction Has only an effect on the section of the well with the highest permeability (can also be enhanced by attaching a rubber washer around the top and bottom of the Ť **Q**Aquifer submersible pump)

Design Materials Development Rehabilitation Questions / Discussion

Surge Block

Flat seal that closely fits the casing interior and is operated like a plunger beneath the water level.

- Because it seals closely to the casing, it has a very direct positive action on the movement in the well.
- Moves the water in both directions, into the well and into the formation.
- Danger of blocking the surge block if not beginning from the top.
- Improved method: Valve in the surge block or stem reduces the downstroke. Therefore, loose fines will not driven too far into the formation.

Lifting ring Static water level Air from compressor Discharge valve Gland Casing G.L. Planning **Rising main** Drilling Air line Groundwater table **Materials** Air line Design $\frac{A}{A+B} \ge 0.5$ Development Α Rehabilitation Pumping level Questions / Discussion Non-pumping level Air lift Air lift pump (right)

Air lift with back draw after collapse of the water column, forced by closing the discharge valve (left)

Development of the well until the sand content declines under a predefined level.

It is always the sand (> 0.06 mm) that triggers the development, as it is not always possible to avoid turbidity from silt and clay.

Monitoring

Monitoring during well development

Sand Content

Monitoring discharges can be performed with an Imhoff cone or a bucket

Planning

Drilling

Materials

Turbidity

Design

Rehabilitation

Turbidity refers to the clarity of water and Development is associated with colloid clay particles. During development, turbidity can be measured in the field with a turbidimeter.

Questions / Discussion

Specific Capacity

The specific capacity of a well is the yield per unit of drawdown (l/s, gpm/ft). Measured with a circular totalizing of low yields with a bucket and a watch.

Caused by drilling contractor / hydrogeologist

- Improper well design (slots size of screen, depths, gravel pack)
- Incomplete well development

Planning Drilling Materials Design

Caused by characteristics of aquifer

Depletion of the aquifer

Development Rehabilitation • Borehole stability problems

Biofouling

Questions / Discussion

- Corrosion
- Incrustation buildup

Caused by the user

• Overpumping

Reduced Well Yield

	Possible causes:	What to check for:	How to correct:
	Pump and/or water system	Low pump production in spite of normal water level in well. Leak in system; worn pump impeller.	Have a licenced drilling contractor/pump specialist or plumber check the pump and water system.
Planning	Acjuifer depletion -rate of withdrawal	Compare current non-pumping static water	Reduce the water use. Install cistern to meet peak
Drilling	drought can temporarily deplete shallow	construction. A lower level confirms aquifer	into another aquifer.
Materials	groundwater zones	depletion. Contact Provincial Government groundwater agency to see if water levels are	
Design		declining.	
Development	Biofilm buildup in well casing, well screen or or pump intake.	Slime buildup on household plumbing fixtures and livestock waterers. Inspect pump and use	Shock chlorinate the well and water system as required —usually once or twice a year. See Module 6 "Shock
Rehabilitation		down-hole camera to check for slime build-up.	Chlorination-Well Maintenance."
Rendomution	Neighboring well interference.	Check for significant drop in water levels in nearby wells. Contact Provincial Government groundwater agency to determine if	Identify other nearby wells located in the same aquifer. Reduce pumping rates as required.
Questions /		groundwater use in the area has decreased.	
Discussion	Mineral scale (incrustation) buildup on perforated well casing, well or pump screen.	Scale formation on plumbing fixtures and livestock waterers. Inspect pump. Use down-hole video camera to check for mineral build-up. Calculate the Ryznar Stability Index to determine the water's incrusting potential.	Once the type of mineral scale has been identified, the well should be cleaned by a licenced water treatment specialist. Treatment could include both physical agitation and chemical/acid treatment.
	Sediment plugging on outside of perforated casing or screen.	Sediment in water, followed by sudden decline in yield.	Have a licenced drilling contractor redevelop the well.
	Collapse of well casing or borehole due to age of well.	Compare current depth of well with original records. A collapsed well will show a shallower depth than the original well.	Recondition the well. If repair is not economical, plug the well and redrill. See Module 9 " <u>Plugging Abandoned</u> <u>Wells</u> " for more information on plugging a well.

Sediments in water

Planning	Ī
Drilling	
Materials	
Design	
Development	ō
Rehabilitation	

Questions	/
Discussion	

	Possible causes:	What to check for:	How to correct:	
	Improper well design or construction.	Sediment appears in water shortly after well completion. Remove pump and use down-hole video camera to inspect well casing and screen.	Have a licensed drilling contractor repair the construction problem.	
	Insufficient well development after construction.	Sediment appears shortly after well completion. Well production may improve with pumping.	A licensed drilling contractor should redevelop the well.	
	Continuous overpumping of well.	Sediment appears in water shortly after well completion.	Compare current discharge rate of well with the driller's recommended rate. If the current flow rate is higher, install a flow restrictor on pump. I required, install cistern to meet peak water requirements.	
nent ation	Corrosion of well casing, liner or screen causing holes.	Sudden appearance of sediment in water when there was no previous problem. Often coupled with a change in water quality. Calculate the Ryznar Stability Index to determine the water's corrosion potential.	Consult a licensed drilling contractor. Depending on the well construction, repair or replace well. Alternate construction materials may be required.	
/ n	Failure of the annulus or casing seal.	Sudden appearance of sediment, coupled with a change in water quality.	Consult a licensed drilling contractor. It may be possible to re-establish the seal. Test water quality regularly and investigate when quality changes occur.	

Reduced Well Yield

	Possible causes:	What to check for:	How to correct:	
Planning	Corrosion of well casing, liner or screen, causing holes. Holes can allow water of undesirable quality to enter the well.	Change in water quality, often coupled with sudden appearance of sediment in water. Calculate the Ryznar Stability Index to determine the water's corrosion potential.	Consult with a licensed drilling contractor about possible repair. Alternate construction materials may be required.	
Drilling	Failure of the annulus or casing seal.	Change in water quality and possible appearance of sediment.	Consult with a licensed drilling contractor about possible repair.	
Materials	Iron bacteria or sulfate-reducing bacteria	Change in water quality such as color,	Shock chlorinate the we	
Design	(biotouling).	odor (e.g., rotten egg) or taste. Check inside of toilet tank for slime buildup and inspect pump. (See note 2 below)	Ichlorination, see Moduli	
Development	Contamination from man-made sources.	Changes in water quality as indicated by	Identify and remove contamination source. Have water analyzed	
Rehabilitation		color, odor or taste. Compare results from regular water analyses for changes. (See note 3 below)	through local health unit to ensure it is safe to drink.	
Questions / Discussion	Limited Aquifer Extent/Reduced Aquifier Recharge	Increase in constituents such as hardness, iron, manganese and sulphate. Compare results from original water analyses for changes. Taste and colour changes in the water may also occur.	For surficial aquifers trapping snor or impounding surface water can enhance aquifer recharge and improve water quality.	

	Problem	Diagnosis	Appearance
	Iron Oxide Iron Bacteria	Rusty slime inside pipes	
	(slime bacteria)	 Cloudy rusty water at pump start-up 	
Planning		Reduced water flow	
Drilling		 Slimy deposits blocking 	
Materials		main lines and laterals	
Design			
Development		1 F	
Rehabilitation	Manganese Oxide	Reduced water flow	
		Blackish-brown deposits	
Questions /		blocking pipes	
Discussion		 Cloudy water at pump start up 	A NUM PARAMENT PARAMENT PARAMENTAL PARAMENTA
		 Often found in iron bearing water 	

Downhole TV, problems

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Downhole TV, problems

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

Planning Drilling Materials Design Development Rehabilitation

Questions / Discussion

- Grout or clay annulus seal is not properly positioned (>>fine material migrates in well)
- Leaking pipe connections lead to mix of different ground-water layers (>> precipitation of Fe when in contact with surface water)
- Filter pack is not gapless (>> sand in well, settlement)
- Lithology was not described properly, no sieve analyses (>> Inappropriate slot width, depth of filter, gravel pack, wrong positioning)
- Eccentric position of the screen in the boring (>> sand in well)

•
Well in good condition

Downhole TV, example of well in good condition

Planning Drilling Materials Design Development Rehabilitation

Well rehabilitation project

• Downhole TV

Planning Drilling Materials Design Development Rehabilitation

- Pumping test, flowmeter test to measure lateral inflow
- Decision if rehabilitate, repair, or start over new? Cost comparisons of rehabilitation vs. new construction. Better place for a new well
- Planning for rehabilitation
- Choice of methods of well rehabilitation treatment of the well (hydromechanical / chemical)
- Well redevelopment
- Follow-up testing, pumping test

Brush

physically remove debris prior to a chemical treatment by wire brushing the screen.

Planning Drilling Materials Design Development Rehabilitation

High pressure jetting

Tool with a adjustable multihead, water-powered jet. Injects water at a high pressure to dislodge debris from the well.

Planning Drilling Materials Design Development Rehabilitation

Hydropuls

The hydropuls uses high pressure pulses of gases and liquids to mobilize the gravel in the filter pack and incrustation on the filter screen. The sudden change of volume creates a cravitational effect that looses the material in the filter pack and the pores spaces of the water-saturated aquifer.

Planning Drilling Materials Design Development Rehabilitation

Chemical treatment

Any chemical rehabilitation must take place after hydromechanical cleaning of the well.

Planning Drilling Materials Design Development Rehabilitation

To prevent any ground water pollution, chemical treatment of a well should only be used as a last option. In most parts of Europe and North America the use is strongly restricted by regulations.

Questions / Discussion

Common used chemicals are chlorine, hydrogen peroxide, organic acids. The author doesn't use chemical treatment on a regular basis and therefore refers to literature.

Discussion

Planning Drilling Materials Design Development Rehabilitation

Field impression Niger

Planning Drilling Materials Design Development Rehabilitation

Literature

- Bieske, Rubberts & Treskatis (1998): Bohrbrunnen
- Dresdner Grundwasserforschungszentrum (2003): Untersuchungen zur Bewertung von Gerätetechnik auf die Wirksamkeit in der Kiesschüttung
- Driscoll, F. (1986) <u>Groundwater and Wells</u>, St. Paul: Johnson Division
- Houben & Treskatis (2007): Regeneration und Sanierung von Brunnen (Water Well Rehabilitation and Restauration)
- ICRC (2010): Technical Review. Borehole drilling and rehabilitation under field conditions
- Roscoe Moss Company, John Wiley and Sons, New York, NY (1990): Handbook of Ground Water Development
- Schreurs, R. : Well Development is Critical", Developing World Water, Hong Kong: Grosvenor Press Int'l
- WVGW, M. Tholen (2006): Arbeitshilfe für Brunnenbauer
- Fletcher G. Driscoll (2008, 3. Edition): Groundwater and Wells (Johnson

Design Materials Development Rehabilitation

RECHARGE QUANTIFICATION IN SEMI-ARID AREAS WITH REMOTE SENSING PRODUCTS

06.06.2014

Lucien Blandenier

Picture: Pierik Falco

Merti aquifer study

06.06.2014

- Where is the water?
- In what quantities ?
- In what qualities ?
- Specificity of semi-arid and arid areas:
 - Water availability is not permanent !
 - Quality is often a 'luxury' (there is a lot of brackish or salty water) !
 - Recharge quantification is crucial for a sustainable exploitation

- Low precipitations (200-400 mm/yr)
- $ET_{pot} >> Et_a$
- Rivers are often disconnected and non permanent
- Infiltration is very low (about 0.5 5% of rainfall)

MERTI AQUIFER – NORTHEAST KENYA

- The Dadaab camp exists since more than 20 years
- About 400'000 refugees
- About 1'000'000 inhabitants from local communities
- Precipitatiton : between 250 and 400 mm/yr
- Two rainy seasons (November and June)
- « Mega » aquifer , 300 km long and 70 width
- 100 m of unsaturated zone

Data	Conceptual model	Numerical model	Recommandations			
Compilation of existing data and field data aquisition	Geometry and characteristics of the aquifer Groundwater flow	Construction of the model geometry Characteristics of the aquifer material	Simulation of the aquifer behaviour under various exploitation schemes and bydro-climatic			
Remote sensing analyses	and quality Hydrostratigraphic units	(hydraulic conductivity and storativity) Boundary conditions	situations Recommandations for			
Continuous water level and electrical conductivity data from TRMC devices	Recharge processes Extractions	Calibration	best strategy exploitation			

- Recharge
- Extractions
- Geometry and characteristics of the reservoir : permeabilities, storativity (~permeability),
 ...
- Groundwater flow: piezometry
- Groundwater "history" and residence time : water quality (electrical conductivity, major elements, trace elements, isotopes, temperature)

– Diffuse recharge vs concentrated recharge

OBSERVED RECHARGE FROM THE SURFACE

OBSERVED RECHARGE FROM THE SURFACE

Difference between P and ET

Inundated areas vs time

Input : River discharge rate

REMOTE SENSING

– Multispectral satellite images

Rayons gamma	Rayons X	UV	Infraro (IR	uge)	Radars, micro- ondes	FM	TV	sw	AM
10 ⁻¹⁴ 10 ⁻ Longueur d'onde (en mètres)	¹² 10 ⁻¹⁰	10 ⁻⁸	10 ⁻⁶ du visible	10 ⁻⁴	10-2	1	1	0 ²	104
400 nm Longueur d'onde (en nanomètre	500 nm		600 nn	n	7	00 _. 1	nm		

- Rainfall : Fewsnet (<u>http://earlywarning.usgs.gov/fews/africa/web/readme.php?symbol=dailyrfe</u>)
- Evapotranspiration : MODIS (<u>http://modis.gsfc.nasa.gov/</u>)

REMOTE SENSING – PRECIPITATION - EVAPOTRANSPIRATION

Merti aquifer study

06.06.2014

REMOTE SENSING – INUNDATED AREAS

\rightarrow Trouver la limite !

UNIVERSITÉ DE NEUCHÂTEL

OBSERVED RECHARGE FROM SURFACE

Inundated areas vs time

SURFACE RECHARGE MODELLING

Numerical model that includes :

- River discharge rate (Q)
- Precipitation (P)
- Evapotranspiration (ET)
- Soil permeability (K)

\rightarrow Q + P – ET = RECHARGE

UNIVERSITÉ DE NEUCHÂTEL

Merti aquifer study

06.06.2014

MERTI AQUIFER – RESPONSE OF THE AQUIFER AFTER A FLOOD?

SKANSKA REDCROSS BH1

MADOGASHE HOSPITAL BH

Data	Conceptual model	> Numerical model	Recommandations
Compilation of existing data and field data aquisition	Geometry and characteristics of the aquifer Groundwater flow	Construction of the model geometry Characteristics of the aguifer material	Simulation of the aquifer behaviour under various exploitation schemes and hydro-climatic
Remote sensing analyses	and quality Hydrostratigraphic units	(hydraulic conductivity and storativity) Boundary conditions	Recommandations for
Continuous water level and electrical conductivity data from TRMC devices	Recharge processes Extractions	Calibration	exploitation
	Iterat	ions	

MERTI AQUIFER – AQUIFER GEOMETRY

MERTI AQUIFER – REGIONAL PIEZOMETRY

Regional potentiometry

- piezometric lines (20m)
- TRMC stations
- Historical values
- Surficial water table
- Water levels [m.a.s.l.]

Compiled from Swarzenski 1977, Lane 1995, GIBB 2004, Earth Water company 2011 and 2013

MERTI AQUIFER – SPECIFIC DISCHARGE

Compiled from Swarzenski 1977, Lane 1995, GIBB 2004, Earth Water company 2011 and 2013

MERTI AQUIFER – ELECTRICAL CONDUCTIVITY (SALINITY)

For comparisation : Sea water EC = 50'000 µS/cm

El Niño 1998

MERTI AQUIFE R- STRATIGRAPHIC UNITS

MERTI AQUIFER – EXTRACTIONS

Data	Conceptual model	Numerical model	Recommandations			
Compilation of existing data and field data aquisition	Geometry and characteristics of the aquifer Groundwater flow	Construction of the model geometry Characteristics of the aquifer material	Simulation of the aquifer behaviour under various exploitation schemes and bydro-climatic			
Remote sensing analyses	and quality Hydrostratigraphic units	(hydraulic conductivity and storativity) Boundary conditions	situations Recommandations for			
Continuous water level and electrical conductivity data from TRMC devices	Recharge processes Extractions	Calibration	best strategy exploitation			

MERTI AQUIFE R- NUMERICAL MODELISATION

Thank you !

Merti aquifer study